Зачем нужны электрические подстанции. Трансформаторные подстанции - какими бывают
Подстанция электрическая (ПС) представляет собой ключевой узел, позволяющий организовать систему энергоснабжения на объектах разной величины, что определяется уровнем выдерживаемой нагрузки самой установки. В зависимости от исполнения оборудование данного вида может повышать или понижать напряжение, а это напрямую определяет целевое назначение ПС.
Основные направления применения
Подстанция распределительная электрическая ответственна за прием и преобразование электроэнергии. При этом напряжение может понижаться или повышаться, а при необходимости и выпрямляться, что обуславливается нуждами потребителя. На следующем этапе выполняется распределение полученной энергии. В случаях, когда предполагается повышение значения напряжения, электроэнергия принимается, например, от генератора, а передается далее на ЛЭП.
Смотрим видео, откуда берется электричество:
Если электроэнергия подается от линий электропередач, то для дальнейшей ее отправки потребителю необходимо осуществить понижение напряжения. В качестве обслуживаемых объектов выступают производственные цеха, населенные типы поселкового или городского типа, микрорайоны и прочее.
Состав оборудования
Электрические станции и подстанции могут поставляться на участок монтажа в готовом, полностью собранном виде или же отдельными блоками и узлами, при этом оборудование будет носить название комплектное. Основные элементы и узлы:
- Камера для установки в ней аппаратуры, включая и трансформатор, а также шинопровод. Встречается два исполнения: полностью закрытое без сетчатых вставок и частично закрытое с ограждением в виде сетки.
- Сборные шины. Они в совокупности представляют целую систему. Электрические станции и подстанции могут содержать также отдельные секции, которые представляют собой те же сборные шины, отделенные коммутационным узлом.
- Токопроводящая система, включающая в себя шины или кабели, которые соединяются с изоляторами. Располагаются такие конструкции на поддерживающих опорах. Именно с помощью данного узла осуществляется передача электроэнергии.
- Трансформатор в количестве от одного до нескольких единиц.
- Распределительное устройство обеспечивает прием и дальнейшее распределение энергии. РУ состоит из нескольких узлов: коммутационная аппаратура, сборные шины, элементы управления и защиты.
Конструкция подстанции электрической
Такое электрическое разнотипное оборудование подстанций, как распред. устройства, встречаются в нескольких исполнениях: открытые, закрытые, комплектные. Первые и вторые из названных вариантов предполагают использование на открытом воздухе или в помещении. А комплектные исполнения, как и любая техника с подобным названием, представляют собой сборную установку, состоящую из готовых для подключения узлов.
Обзор существующих видов
Классифицируется оборудование такого рода в первую очередь по назначению.
При этом выделяют:
- Генерирующие;
- Потребительские;
- Преобразовательно-распределительные.
Электрические генерирующие станции и подстанции представляют технику, ответственную выработку энергии, тогда как потребительские исполнения принимают электроэнергию от ЛЭП и обеспечивают потребности объектов разного целевого назначения. Преобразовательно-распределительные аналоги выполняют функцию по преобразованию напряжения с целью дальнейшего распределения.
Различают оборудование данного рода по набору задач, которые с его помощью решаются:
- Трансформаторные установки;
- Преобразовательные аналоги.
Электрическая схема трансформаторной распределительной подстанции позволяет понижать или повышать напряжение в соответствии с нуждами потребителя, тогда как преобразовательная техника ответственна за изменение электрических параметров (род тока, значение частоты).
Существует разделение таких установок и по уровню значимости в системе энергоснабжения:
- Главные понизительные;
- Глубокого ввода;
- (питают электротранспорт разного типа, будь то железнодорожные поезда, наземные или подземные средства передвижения);
- Комплектные – представляют собой сборную установку, состоящую из полностью готовых к подключению отдельных узлов.
Смотрим видео, что из себя представляет тяговая подстанция:
Другого рода классификация, представляет электрические станции и подстанции, отличные по схеме подключения:
- Тупиковые – получают питание от одной соседней ПС;
- Проходные – оборудование, представляющее собой единую линию с двусторонним питанием;
- Узловые – являются ключевым звеном, так как помимо питающих установок соединяются еще и с транзитными;
- Ответвительные – представляют собой часть разводки системы энергоснабжения.
Помимо выше перечисленных исполнений существует особый вид такой техники – автономная разнотипная подстанция электрическая. Ее особенность заключается в способности одновременно совмещать две важные функции: выработку электроэнергии, а также ее распределение далее по сети, откуда она поступает к потребителю.
Параметры и схема подключения
Существует несколько основных требований, предъявляемых к составлению схем соединения основных узлов электрооборудования, которые должны выполняться:
- Надежность энергоснабжения, безопасность потребителей.
- Минимальные затраты при эксплуатации и обслуживании оборудования.
- Удобство работы с техникой.
- Минимальный риск ошибки в чрезвычайных ситуациях, когда требуется переключение режимов работы оборудования.
Главная схема электрических соединений распределительной подстанции должна изображать основные узлы установки (РУ, силовые трансформаторы, коммутационные аппараты, защитные элементы и системы управления).
Различают два способа составления схем: многолинейные и однолинейные. В первом случае обязательно показываются все фазы установки, тогда как второй вариант предполагает включение изображения лишь одной фазы по причине идентичности.
На рисунке 1 показана однолинейная электрическая схема распределительной подстанции, которая раскрывает принцип работы установки, обеспечивающей нужды потребителей третьей категории. В качестве основных параметров выступает значение напряжения ВН и НН (на высшей и низшей стороне), а также мощность установки и тип трансформатора.
Нормы расположения и требования
Главные понизительные подстанции должны располагаться в непосредственной близости к участкам наибольшей нагрузки, цеховые установки всегда находятся как можно ближе к потребителю. Более предпочтительным вариантом является комплектная подстанция, так как в этом случае нет сильной зависимости от строительной части при ее монтаже.
Отдельно стоящие установки предполагают дополнительные траты на организацию подводящих сетей, а вместе с тем возрастают и потери. Гораздо более предпочтительным является встроенный вариант с вынесенным трансформатором.
Существуют допустимые пределы расположения электрооборудования данного типа относительно взрывоопасных обслуживаемых объектов: от 0,8 до 100 м. Выбор определенного значения из этого диапазона обуславливается степенью опасности, а также вариантом расположения (открытый, закрытый).
С целью обеспечить безопасную эксплуатацию, а также достаточный уровень надежности функционирования электрооборудования Правительством Российской Федерации определяется охранная зона электрической подстанции. Это означает, что на оговоренной территории, прилегающей к такого рода установкам, действуют ограничения на использования земельных участков по прямому назначению.
Таким образом, учитывая широкий выбор исполнений электроподстанций, их выбор должен основываться на соответствии главных параметров оборудования условиям эксплуатации. Только так можно обеспечить безопасность функционирования установки, что является ключевым моментом при составлении схемы подключения такой техники. Сложность проекта по организации системы энергоснабжения заключается в необходимости выбора большого количества оборудования, а также организации его слаженной работы. Поэтому нередко предпочтительным вариантом является именно комплектная подстанция.
Специалисты по электротехнике знают, что собой представляют электрические станции и подстанции, для чего они предназначены и как устроены. Им известно, как рассчитать их мощность и все необходимые параметры, такие как число витков, сечение провода и размеры магнитопровода. Этому учат студентов в технических вузах и техникумах. Люди с гуманитарным образованием догадываются, что сооружения, часто стоящие особняком в виде домиков без окон (их любят раскрашивать любители граффити), нужны для энергоснабжения домов и предприятий, и проникать в них не следует, об этом красноречиво говорят устрашающие эмблемы в виде черепов и молний, прикрепленные к опасным объектам. Возможно, многим и не нужно больше знать, но информация лишней не бывает.
Немного физики
Электроэнергия - это товар, за который надо платить, и очень обидно, если она расходуется напрасно. А это, как при любом производстве, неизбежно, задача состоит лишь в том, чтобы напрасные потери уменьшить. Энергия равна мощности, умноженной на время, поэтому в дальнейших рассуждениях можно оперировать этим понятием, так как время течет постоянно, и повернуть его назад, как поется в песне, невозможно. Электрическая мощность же, в грубом приближении, без учета реактивных нагрузок, равна произведению напряжения на ток. Если рассматривать ее подробнее, в формулу попадет косинус фи, определяющий соотношение потребленной энергии с полезной ее составляющей, называемой активной. Но этот важный показатель не имеет прямого отношения к вопросу о том, зачем нужна подстанция. Электрическая мощность, таким образом, зависит от двух главных участников законов Ома и Джоуля-Ленца, напряжения и тока. Малый ток и высокое напряжение могут образовывать такую же мощность, как и наоборот, большой ток и низкое напряжение. Казалось бы, какая разница? А она есть, и очень большая.
Нагревать воздух? Увольте!
Итак, если воспользоваться формулой активной мощности, то получится следующее:
- P = U x I, где:
U - напряжение, измеряемое в Вольтах;
I - ток, измеряемый в Амперах;
P - мощность, измеряемая в Ваттах или Вольт-амперах.
Но есть и еще одна формула, описывающая упоминавшийся уже закон Джоуля-Ленца, согласно которой выделяемая при прохождении тока, равна квадрату его величины, умноженной на сопротивление проводника. Нагревать окружающий линию электропередачи воздух - значит, зря расходовать энергию. А уменьшить эти потери можно теоретически двумя способами. Первый из них предполагает уменьшение сопротивления, то есть утолщение проводов. Чем больше сечение, тем меньше сопротивление, и наоборот. Но расходовать металл зря тоже не хочется, он дорогой, медь все-таки. К тому же двойной расход материала проводника приведет не только к удорожанию, но и к утяжелению, что, в свою очередь, повлечет увеличение трудоемкости монтажа высотных линий. И опоры потребуются более мощные. А потери снизятся только вдвое.
Решение
Чтобы уменьшить нагрев проводов при передаче энергии, нужно снизить величину проходящего тока. Это совершенно ясно, ведь его снижение вдвое приведет к уменьшению потерь вчетверо. А если в десять раз? Зависимость квадратичная, значит, убытки станут в сто раз меньше! Но мощность должна «качаться» та же, которая нужна совокупности потребителей, ожидающих ее на другом конце ЛЭП, идущей от электростанции иногда за сотни километров. Напрашивается вывод о том, что необходимо увеличить напряжение во столько же раз, во сколько уменьшен ток. в начале линии передачи как раз для этого и предназначена. Из нее выходят провода под очень большим напряжением, измеряемым десятками киловольт. На протяжении всего расстояния, отделяющего ТЭС, ГЭС или АЭС от того населенного пункта, куда она адресована, энергия путешествует с малым (относительно) током. Потребителю же нужно получить мощность с заданными стандартными параметрами, которые в нашей стране соответствуют 220 вольтам (или 380 V межфазным). Теперь нужна не повышающая, как на входе ЛЭП, а понижающая подстанция. поступает на распределительные устройства для того, чтобы в домах горел свет, а на заводах крутились роторы станков.
Что в будке?
Из вышесказанного ясно, что самая главная деталь в подстанции - это трансформатор, причем обычно трехфазный. Их может быть несколько. Например, можно заменить тремя однофазными. Большее количество может быть обусловлено высокой мощностью потребления. Конструкция этого устройства бывает различной, но в любом случае она имеет внушительные размеры. Чем большая мощность отводится потребителю, тем серьезнее выглядит сооружение. Устройство электрической подстанции, тем не менее, сложнее, и включает в себя не только трансформатор. Здесь же находится оборудование, предназначенное для коммутации и защиты дорогостоящего агрегата, а также чаще всего и для его охлаждения. Еще электрическая часть станций и подстанций содержит распределительные щиты, снабженные контрольно-измерительной аппаратурой.
Трансформатор
Главная задача этого сооружения - донести энергию до потребителя. Перед отправкой напряжение нужно повысить, а после ее получения понизить до стандартного уровня.
При всем том, что схема электрической подстанции включает множество элементов, главным из них является все же трансформатор. Принципиальной разницы между устройством этого изделия в обычном блоке питания бытового прибора и промышленными образцами высокой мощности нет. Трансформатор состоит из обмоток (первичной и вторичной) и магнитопровода, сделанного из ферромагнетика, то есть материала (металла), усиливающего магнитное поле. Расчет этого устройства - вполне стандартная учебная задача для студента технического вуза. Главное отличие трансформатора подстанции от его менее мощных аналогов, бросающееся в глаза, помимо размеров, состоит в наличии системы охлаждения, представляющей собой совокупность масляных трубопроводов, опоясывающих греющиеся обмотки. Проектирование электрических подстанций, однако, задача непростая, так как необходим учет многих факторов, начиная от климатических условий и заканчивая характером нагрузки.
Тяговые мощности
Не только жилые дома и предприятия потребляют электроэнергию. Здесь все ясно, нужно подать 220 Вольт переменного тока относительно нейтральной шины или 380 В между фазами с частотой 50 Герц. Но есть еще и городской электротранспорт. Трамваям и троллейбусам требуется напряжение не переменное, а постоянное. Причем разное. На контактном проводе трамвая должно быть 750 Вольт (относительно земли, то есть рельсов), а троллейбусу требуется на одном проводнике ноль и 600 Вольт постоянного тока на другом, резиновые протекторы колес являются изоляторами. Значит, нужна отдельная очень мощная подстанция. на ней преобразуется, то есть выпрямляется. Мощность ее очень большая, ток в цепи измеряется тысячами Ампер. Такое устройство называется тягловым.
Защита подстанции
И трансформатор, и мощное выпрямительное устройство (в случае с тягловыми источниками электропитания) стоит дорого. Если возникнет аварийная ситуация, а именно в цепи вторичной обмотки (а следовательно, и первичной) появится ток. Значит, сечение проводников не рассчитано. Электрическая трансформаторная подстанция начнет нагреваться за счет резистивного тепловыделения. Если не предусмотреть такой сценарий развития событий, то в результате короткого замыкания в любой из периферийных линий провод обмоток расплавится или сгорит. Чтобы этого не произошло, применяются различные методы. Это дифференциальная, газовая и максимальная токовая защиты.
Дифференциальная производит сравнение величин тока в цепи и вторичной обмотке. Газовая защита срабатывает при появлении в воздушной среде продуктов горения изоляции, масла и проч. Токовая защита отключает трансформатор при превышении током максимально установленного значения.
Трансформаторная подстанция автоматически должна отключиться также в случае удара молнии.
Виды подстанций
Они бывают разными по мощности, по назначению и устройству. Те из них, которые служат только для повышения или понижения напряжения, называются трансформаторными. Если требуется также изменение других параметров (выпрямление или частотная стабилизация), то подстанция называется преобразующей.
По своему архитектурному исполнению ПС бывают пристроенными, встроенными (примыкающими к основному объекту), внутрицеховыми (находящимися внутри производственного помещения) или представлять собой отдельно стоящее вспомогательное здание. В некоторых случаях, когда не требуется высокая мощность (при организации энергоснабжения небольших населенных пунктов), применяется мачтовая конструкция подстанций. Иногда для размещения трансформатора используются опоры ЛЭП, на которых монтируется все необходимое оборудование (предохранители, разрядники, разъединители и проч.).
Электрические сети и подстанции классифицируются по напряжению (до 1000 кВ или более, то есть высоковольтные) и мощности (например, от 150 ВА до 16 тыс. кВА).
По схематическому признаку наружного подключения подстанции бывают узловыми, тупиковыми, проходными и ответвительными.
Внутри камеры
Пространство внутри подстанции, в котором расположены трансформаторы, шины и аппаратура, обеспечивающая работу всего устройства, называется камерой. Она может быть огражденной или закрытой. Разница между способами отчуждения ее от окружающего пространства невелика. Закрытая камера представляет собой полностью изолированное помещение, а огражденная находится за несплошными (сетчатыми или решетчатыми) стенами. Изготавливаются они, как правило, промышленными предприятиями по типовым проектам. Обслуживание систем энергоснабжения производит обученный персонал, имеющий допуск и необходимую квалификацию, подтвержденную официальным документом о разрешении работать на высоковольтных линиях. Оперативное наблюдение за работой подстанции осуществляет дежурный электрик или энергетик, находящийся возле главного распределительного щита, который может располагаться удаленно от ПС.
Распределение
Есть еще одна важная функция, которую выполняет силовая подстанция. Электрическая энергия распределяется между потребителями согласно их нормам, а кроме этого, загруженность трех фаз должна быть как можно более равномерной. Для того чтобы эта задача успешно решалась, существуют распределительные устройства. РУ работают на одном напряжении и содержат аппараты, осуществляющие коммутацию и защиту линий от перенагрузки. С трансформатором РУ соединены предохранителями и прерывателями (однополюсными, по одному на каждую фазу). Распределительные устройства по месту размещения подразделяются на открытые (расположенные на открытом воздухе) и закрытые (находящиеся внутри помещения).
Безопасность
Все работы, производимые в электрической подстанции, относятся к разряду особо рискованных, поэтому требуют чрезвычайных мер по обеспечению безопасности труда. В основном ремонт и обслуживание производятся при полном или частичном обесточивании. После того как напряжение будет отключено (электрики говорят «снято»), при условии наличия всех необходимых допусков, токоведущие шины заземляются во избежание случайного включения. Для этого же предназначены и предупредительные таблички «Работают люди» и «Не включать!». Персонал, обслуживающий высоковольтные подстанции, систематически проходит обучение, а навыки и полученные знания периодически контролируются. Допуск № 4 дает право выполнять работы на электроустановках свыше 1 кВ.
Трансформаторная подстанция – вид электроустановки, основное назначение которой – получение, преобразование (повышение/понижение напряжения) и дальнейшее распределение по потребителям электрической энергии. Основными элементами электрической системы на трансформаторной подстанции являются силовые трансформаторы, которые и преобразуют электроэнергию.
Как устроена подстанция
Кроме трансформаторов не менее важными элементами являются:
● распределительные устройства высшего и низшего напряжения;
● устройства управления;
● устройства высоковольтной защиты;
● масляные, воздушные и вакуумные высоковольтные выключатели;
● ограничители перенапряжения;
● высоковольтные разрядники;
● трансформаторы тока и трансформаторы напряжения;
● системы и секции шин;
● устройства измерения и учёта электроэнергии;
● устройства телемеханики;
● система питания собственных нужд;
● вспомогательное оборудование и др.
Силовые трансформаторы, которые повышают входное напряжение, называются повышающими, а трансформаторы, понижающие входное напряжение, называются понижающими. В зависимости от вида установленных силовых трансформаторов, подстанции могут быть повышающими и понижающими.
Повышающие трансформаторные подстанции находятся обычно на электростанциях. Значение напряжения, вырабатываемое генератором электростанции, увеличивается при помощи повышающего трансформатора.
Повышение напряжения необходимо для возможности дальнейшей передачи электроэнергии большой мощности на большие расстояния и с наименьшими потерями. Повышенное напряжение позволяет сэкономить на электрических проводниках при монтаже линий электропередач.
Для большинства остальных случаев необходимо понижение входящего напряжения и, соответственно, в таких случаях используются понижающие трансформаторные подстанции.
Виды
Все трансформаторные подстанции делят на четыре основных вида:
● УРП (узловая распределительная подстанция);
● ГПП (главная понижающая/понизительная подстанция);
● ПГВ (подстанция глубокого ввода);
● ТП (трансформаторный пункт).
УРП
Данный вид электроустановки представляет собой центральную подстанцию, получающую электроэнергию от энергосистемы напряжением 110-220кВ. На УРП электроэнергия высокого напряжения распределяется либо с трансформацией при помощи силовых трансформаторов, либо вообще без трансформации.
С узловой подстанции распределение электроэнергии осуществляется на подстанции глубокого ввода, которые располагаются на территории крупных промышленных предприятий.
Узловые подстанции обычно находятся за пределами предприятий, которые они питают электроэнергией. В этом случае обслуживание и эксплуатацию всего электрооборудования УРП осуществляет энергоснабжающая организация.
В случае расположения УРП на территории промышленного предприятия, обязанности по обслуживанию подстанции возлагаются на электротехнический персонал данного предприятия.
ГПП
Главная понижающая подстанция получает электроэнергию напрямую от районной энергосистемы. Значение входного напряжения 35-220кВ. Назначение главной понижающей подстанции – распределение электроэнергии по предприятию при более низких значениях напряжения.
ПГВ
Данная подстанция получает электроэнергию напряжением 35-220кВ или напрямую от энергосистемы, или от центрального распредпункта предприятия, на котором она расположена. Основное назначение ПГВ – электроснабжение отдельного объекта на предприятии или определённой группы электроустановок. Территориально подстанции глубокого ввода располагаются на небольшом расстоянии от наиболее энергозатратных технологических объектов предприятия.
ТП
Трансформаторный пункт представляет собой небольшую подстанцию, на которую подаётся входное напряжение в 6, 10 или 35кВ. При помощи силовых трансформаторов это напряжение понижается до значений 380В (400В).
Одним из видов трансформаторного пункта является комплектная трансформаторная подстанция (КТП). Количество силовых трансформаторов КТП обычно равно одной или двум единицам. Иногда встречаются КТП на три силовых трансформатора. Число трансформаторов зависит от категории надёжности электроснабжения электрических потребителей, которые питает трансформаторная подстанция.
Комплектные трансформаторные подстанции, расположенные на производстве, называют цеховыми, а КТП, питающие городских потребителей, называют городскими.
Другие типы подстанций
Кроме основных видов трансформаторных подстанций, которые осуществляют питание мощных потребителей, в энергосистеме используются и подстанции для узкоспециализированных нужд. К таким подстанциям можно отнести так называемые тяговые подстанции, осуществляющие питание электрических линий общественного транспорта (троллейбусы, трамваи).
В зависимости от вида, назначения и размеров подстанции, могут использоваться как масляные трансформаторы, так и трансформаторы сухого исполнения. К примеру, современные КТП очень часто комплектуются сухими силовыми трансформаторами.
По способу присоединения к линии
В зависимости от варианта или способа подключения к питающей линии электропередач бывают:
● тупиковые подстанции (получают электроснабжение от одной или двух отдельных линий);
● проходные подстанции (транзитные);
● ответвительные подстанции (для подачи электроэнергии используются специальные ответвления (отпайки) от проходящих линий электропередач).
Место расположения
Трансформаторные подстанции по месту расположения делят на два вида:
● открытые;
● закрытые.
Открытые подстанции располагаются на открытой территории. Закрытые трансформаторные подстанции находятся в производственных цехах, в закрытых помещениях.
Иногда трансформаторы находятся на специальных мачтах. Таким расположением трансформаторов характеризуются мачтовые трансформаторные подстанции.
В целях экономии металла при изготовлении ЛЭП возникает необходимость в значительном повышении передаваемого напряжения и в свою очередь уменьшения потерь на этапе активного сопротивления. Чем выше напряжение, тем больше мощность, а значит, тем больше расстояние, на которое может быть передана электроэнергия. Электрическая подстанция представляет собой установку, используемую для распределения либо преобразования энергии. Электрические подстанции - это, безусловно, один из самых важных конструктивных элементов любой системы передачи и распределения электроэнергии. Наличие в устройстве трансформаторов позволяет осуществлять понижение и повышение величины напряжения.
Устройство электрической подстанции
Любая электрическая подстанция состоит из нескольких элементов, наиболее важным из которых является трансформатор, задача которого состоит в преобразовании электроэнергии, расщеплении, повышении или понижении линии. Работая на высоких мощностях трансформатор выделяет значительное количество тепла, которое отводится и рассевается благодаря конструкции, оснащенной радиатором. Для адекватной работы всех элементов конструкции важно, чтобы и подстанций осуществлялась специалистами. Еще один важный элемент устройства электрической подстанции - вводные конструкции под кабельные линии. Их задача - организовывать прием вводного напряжения, передавая его на вход трансформатора. После преобразования энергия передается на распределительное устройство (РУ), задача которого - принять и распределить электричество.
Кроме основных компонентов оборудование подстанции включает несколько модулей, выполняющих специфическую задачу.
- Разъединители
Осуществляют оперативное переключение в электросхеме РУ и создание видимого разрыва цепи. Разъединители нельзя разъединять под нагрузкой, так как они не имеют дугогасительных элементов. Состоят разъединители из неподвижных (закрепленных на изоляторах) и подвижных контактов.
- Измерительные компоненты
Трансформаторы, измеряющие электрические величины и питающие устройство релейной защиты. При максимальном значении величин, напряжение и выходной ток не превышают 100 В и 5 А.
Соединяют отдельные элементы РУ. Изготавливаются из меди либо алюминия.
- Регулирующие устройства
Реакторы, батареи, фазовращатели ограничивают значения тока.
- Нелинейный ограничитель и разрядники
Осуществляют защиту линий от коммутационных и атмосферных перенапряжений.
- Заземляющие устройства
Соединяют с землей части оборудования, изготовленные из металла.
- Силовые выключатели
Коммутационные компоненты, отвечающие за включение и выключение силовой цепи в режиме токовой нагрузки, перегрузки, холостого хода, короткого замыкания.
- Системы автоматики и защиты
Сюда входит система коммерческого и технического учета электрической энергии, система управления и так далее.
Классификация подстанций
Основные виды электрических подстанций являются распределительные и трансформаторные подстанции. Распределительная подстанция является узловой и осуществляет прием и распределение электрической энергии. Трансформаторная подстанция отвечает за уменьшение либо повышение значения напряжения благодаря наличию встроенного трансформатора.
В зависимости от способа присоединения к сети выделяют несколько видов подстанций:
- Ответвительная
Может быть присоединена к двум или одной линии глухой отпайкой, осуществляется по схеме 2-х блоков с короткозамыкателями и отделителями. Присоединяется к линиям 35-220 кВ.
- Проходная
Входит в рассечку двух или одной линии с одно- или двухсторонним питанием. Применяются подстанцию этого типа в простых замкнутых сетях. Для проходной подстанции может быть предусмотрена отходящая линия с разъединителем. Транзит мощности осуществляется через нормально замкнутую перемычку с выключателем.
- Промежуточная
Подстанция, необходимая для питания потребителей. Промежуточные подстанции могут присоединяться к двум или одной проходящим ВЛ, либо присоединяться путем захода ВЛ с одно/двухсторонним питанием.
- Транзитная
Используется для питания потребителей и передачи потоков мощности в смежные сети соседних энергосистем.
- Преобразовательная
Подстанция, служащая для приема и передачи мощности на постоянном токе. Характеризуется большой мощностью и значительным числом выпрямительных, параллельно работающих, агрегатов.
- Узловая
Тип подстанции, к которой может быть присоединено более 2-х линий, которые приходят от нескольких электроустановок.
- Тупиковая
Данная разновидность подстанции получает электроэнергию от электроустановки по нескольким или одной линии. Выполняются по схеме блока: трансформатор - линия с предохранителем и разъединителем электрическим.
Конструктивно РУ электрической подстанции может быть открытого типа (когда оборудование расположено под открытым небом) и закрытого типа (как правило, в условиях города).
Исходя из назначения подстанции классифицируются на системные и потребительские. На системных подстанциях происходит связь различных энергосистем или отдельных районов энергосистемы. Распределение электрической энергии между потребителями осуществляют потребительские подстанции. Мощность и назначение отдельно взятой подстанции определяется конфигурацией и схемой сети, в рамках которой подстанция подлежит эксплуатации, а также характером нагрузок, полученных от присоединенных потребителей
Определение напряжения на стороне низшего напряжения подстанции
Еcли надо вычислить напряжение на шинах низкого напряжения (НН) подстанций, то расчет должен быть дополнен еще одним этапом. Должны быть учтены потери напряжения в сопротивлениях трансформаторов и автотрансформаторов и наличие магнитной связи между их обмотками.
Покажем последовательность расчета на примере подстанции 1 предыдущей схемы.
На рисунке показана схема соединения элементов, учтенных при определении расчетной нагрузки этой подстанции 1 и указаны мощности, которые должны быть найдены и просуммированы при вычислении .
Так как напряжение U 1 известно (определено на предыдущем этапе расчета), то потеря напряжения в сопротивлении трансформатора Z т1 может быть найдена по величине напряжения U 1 и мощности , протекающей по сопротивлению Z т1 .
При этом потеря напряжения
,
а приведенные напряжения на шинах низкого напряжения подстанций
.
Искомое напряжение на шинах НН подстанции 1
.
Можно применять и способ, предусматривающий приведение параметров схемы и ее режима к одной ступени трансформации. В нашем примере целесообразно привести сопротивление линии ЛЧ к номинальному напряжению 110 кВ. В этом случае из схемы замещения исключается идеальный трансформатор, точки объединяются, а сопротивления Z 4 заменяется сопротивлением:
Напряжение в точке 3 при расчете также следует принимать приведенным к той же ступени трансформации, что и , т.е. считать, что . Оба подхода к расчету равноценны.
12.3. Расчеты режима линий с двусторонним питанием при различающихся напряжениях источников питания (по концам )
Для расчета схем с несколькими независимыми источниками питания широко используется принцип наложения.
Согласно этому принципу токи и мощности в ветвях могут рассматриваться как результат суммирования ряда слагающих, число которых равно числу независимых источников напряжения.
Каждый из этих токов определяется действием лишь одного из источников напряжения при равенстве нулю напряжений других источников.
Линии с двусторонним питанием при различающихся напряжениях по концам относятся к числу электрических цепей с независимыми источниками мощности. Для её расчета также может быть применен принцип наложения.
Заданы различные напряжения по концам линии, например U 1 >U 4 .
Известны мощности нагрузок S 2 и S 3 и сопротивления участков линии Z kj , где k – узел начала участка линии, j – узел конца участка линии.
Надо найти потоки мощности S kj .
В соответствии с известным из ТОЭ принципом наложения, линию можно представить двумя линиями (рисунок б) и в)).
Потоки мощности в исходной линии можно получить в результате наложения (суммирования) потоков в этих линиях. Потоки мощности в линии с равными напряжениями по концам (U н.) рисунок б) определяются известными выражениями:
где
где
В линии на рисунке в) в направлении от источника питания с большим напряжением к источнику с меньшим напряжением протекает сквозной уравнительный ток I ур. и уравнительная мощность S ур.
Соответственно в результате положения потоков, определенных по формулам (1), (2) и (3), определяются потоки мощности в линии с двусторонним питанием на рисунке а)
Определение потерь мощности DS kj осуществляется по формуле:
где k – узел начала участка линии;
j – узел конца участка линии;
Затем определяются напряжения.
Допустим точкой потокораздела является точка3,рисунок 2).Разрежем линию в узле 3, рис. д)
Теперь можно определить напряжения или падения напряжения
(DU нб) в двух разомкнутых сетях, т.е. в линиях 1–3 и 4–3 1 т.к. U 1 > U 4 , то DU 1-3 > DU 4-3 и DU нб = DU 1-3
a)
Послеаварийные режимы
B. Наиболее тяжелые – выход из строя и отключение участков 1-2 и 3-4 (ближайших к источнику питания). Проанализируем эти режимы и определим наибольшую потерю напряжения DU нб в режиме, когда отключен участок 4-3 рисунок е). Обозначим наибольшую потерю напряжения DU 1-3 ав.
